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Figure 1: Real-time rendering results with radiance regression functions for scenes with glossy interreflections (a), multiple local lights (b),

and complex geometry and materials (c).

Abstract

We present radiance regression functions for fast rendering of
global illumination in scenes with dynamic local light sources. A
radiance regression function (RRF) represents a non-linear map-
ping from local and contextual attributes of surface points, such as
position, viewing direction, and lighting condition, to their indirect
illumination values. The RRF is obtained from precomputed shad-
ing samples through regression analysis, which determines a func-
tion that best fits the shading data. For a given scene, the shading
samples are precomputed by an offline renderer.

The key idea behind our approach is to exploit the nonlinear co-
herence of the indirect illumination data to make the RRF both
compact and fast to evaluate. We model the RRF as a multilayer
acyclic feed-forward neural network, which provides a close func-
tional approximation of the indirect illumination and can be effi-
ciently evaluated at run time. To effectively model scenes with spa-
tially variant material properties, we utilize an augmented set of
attributes as input to the neural network RRF to reduce the amount
of inference that the network needs to perform. To handle scenes
with greater geometric complexity, we partition the input space of
the RRF model and represent the subspaces with separate, smaller
RRFs that can be evaluated more rapidly. As a result, the RRF
model scales well to increasingly complex scene geometry and ma-
terial variation. Because of its compactness and ease of evaluation,
the RRF model enables real-time rendering with full global illu-
mination effects, including changing caustics and multiple-bounce
high-frequency glossy interreflections.
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1 Introduction

Global light transport provides scenes with visually rich shading
effects that are an essential component of photorealistic rendering.
Much of the shading detail arises from multiple bounces of light.
This reflected light, known as indirect illumination, is generally ex-
pensive to compute. The most successful existing approach for in-
direct illumination is precomputed radiance transfer (PRT) [Sloan
et al. 2002; Ramamoorthi 2009], which precomputes the global
light transport and stores the resulting PRT data for fast render-
ing at run time. However, even with PRT, real-time rendering with
dynamic viewpoint and lighting remains difficult.

Two major challenges in real-time rendering of indirect illumina-
tion are dealing with dynamic local light sources and handling high-
frequency glossy interreflections. Most existing PRT methods as-
sume that the lighting environment is sampled at a single point in
the center of the scene and the result is stored as an environment
map. For this reason, these methods cannot accurately represent in-
cident radiance of local lights at different parts of the scene. To ad-
dress this problem, Kristensen et al. [2005] precomputed radiance
transfer for a dense set of local light positions and a sparse set of
mesh vertices. Their approach works well for diffuse scenes but has
difficulty representing effects such as caustics and high-frequency
glossy interreflections, since it would be prohibitively expensive to
store the precomputed data for a dense set of mesh vertices.

To face these challenges, we introduce the radiance regression
function (RRF), a function that returns the indirect illumination
value for each surface point given the viewing direction and light-
ing condition. The key idea of our approach is to design the RRF
as a nonlinear function of surface point properties such that it has a
compact representation and is fast to evaluate. The RRF is learned
for a given scene using nonlinear regression [Hertzmann 2003] on
training samples precomputed by offline rendering. These samples
consist of a set of surface points rendered with random viewing
and lighting conditions. Since the indirect illumination of a surface
point in a given scene is determined by its position, the location of
light sources, and the viewing direction, we define these properties
as basic attributes of the point and learn the RRF with respect to
them. In rendering, the attributes of each visible surface point are
obtained while evaluating direct illumination. The indirect illumi-
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nation of each point is then computed from their attributes using
the RRF, and added to the direct illumination to generate a global
illumination solution.

We model the RRF by a multilayer acyclic feed-forward neural net-
work. As a universal function approximator [Hornik et al. 1989],
such a neural network can approximate the indirect illumination
function to arbitrary accuracy when given adequate training sam-
ples. The main technical issue in designing our neural network RRF
is how to achieve a good approximation through efficient use of the
precomputed training samples. To address this issue we present
two techniques. The first is to augment the set of attributes at each
point to include spatially variant surface properties. Though regres-
sion could be performed using only the basic attributes, this results
in suboptimal use of the training data and inferior approximation
results because spatially variant surface properties make the RRF
highly complex as a function of only the basic attributes. By per-
forming regression with respect to an enlarged set of attributes that
includes surface normal and material properties, the efficiency of
sample use is greatly elevated because the mapping from the aug-
mented attributes to indirect illumination can be much more easily
computed from training samples. The second technique is to par-
tition the space of RRF input vectors and fit a separate RRF for
each of the subspaces. Though a single neural network can effec-
tively model the indirect illumination of a simple scene, the larger
network size needed to model complex scenes leads to substan-
tially increased training and evaluation time. To expedite run-time
evaluation, we employ multiple smaller networks that collectively
and more efficiently represent indirect illumination throughout the
scene.

Our main contribution is a fundamentally new approach for real-
time rendering of precomputed global illumination. Our method
directly approximates the indirect global illumination, which is a
highly complex and nonlinear 6D function (of surface position,
viewing direction, and lighting direction). With carefully designed
neural networks, our method can effectively exploit the nonlinear
coherence of this function in all six dimensions simultaneously. By
contrast, PRT methods only exploit nonlinear coherence in some
dimensions and resort to dense sampling in the other dimensions.
Run-time evaluation of analytic neural-network RRFs can be ac-
complished in screen space with a deferred shading pass easily in-
tegrated into existing rendering pipelines. As a result, the precom-
puted RRFs are both compact and fast to evaluate, and our method
can render challenging visual effects - such as caustics, sharp in-
direct shadows, and high-frequency glossy interreflections - all in
real time. In our method the precomputed neural networks depend
only on lighting effects on the object surface, not on the underlying
surface meshing. This makes our method more scalable than PRT,
which relies on dense surface meshing for high-frequency lighting
effects.

As far as we know, our method provides the first real-time solution
for rendering full indirect illumination effects of complex scenes
with dynamic local lighting and viewing. For scenes with complex
geometry and material variations (e.g., Figure 1), our technique can
render their full global illumination effects in 512 x 512 images
at 30 FPS, capturing visual effects such as caustics (Figure 9(a)),
high-frequency glossy interreflections (Figure 8(d)), glossy inter-
reflections produced by four or more light bounces (Figure 1(a) and
Figure 10), indirect hard shadows (Figure 1(c)), and mixtures of dif-
ferent lighting effects in complex scenes (Figure 12). The rendering
time mainly depends on the screen size, not the number of objects
in the scene. It is fairly easy to scale up to larger scenes with many
objects because our run-time algorithm renders all visible objects in
parallel in screen space. This scalability is reflected in our results,
where the frame rates of the complex bedroom scene (Figure 12)
and the simple Cornell box (Figure 9(a)) are about the same. Our
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RRF representation is run-time local, i.e., the run-time evaluation
of the RRFs of each 3D object is independent of the RRFs of other
3D objects in the scene.

2 Related Work

Due to space limitations, we only discuss recent methods that are
directly related to our work. For a broader presentation on inter-
active global illumination techniques, we refer the reader to recent
surveys [Wald et al. 2009; Ramamoorthi 2009; Ritschel et al. 2012].

Interactive Global lllumination Numerous methods have been
proposed to quickly compute the global illumination of a scene.
One solution is to accelerate classical global illumination algo-
rithms using the GPU or multiple CPUs [Wald et al. 2009]. Re-
cently, Wang et al. [2009] presented a GPU based photon mapping
method for rendering full global illumination effects. McGuire et
al. [2009] developed an image space photon mapping algorithm to
exploit both the CPU and GPU for global illumination. Parker et
al. [2010] described a programmable ray tracing engine designed
for the GPU and other highly parallel architectures.

Another approach for obtaining real-time frame rates is to sac-
rifice accuracy for speed. One such solution is to approximate
indirect lighting reflected from surfaces as a set of virtual point
lights (VPLs) [Keller 1997; Dachsbacher and Stamminger 2006;
Ritschel et al. 2008; Nichols and Wyman 2010; Thiedemann et al.
2011]. Several methods [Dong et al. 2007; Dachsbacher et al. 2007;
Crassin et al. 2011] approximate global illumination using coarse-
scale solutions computed over a scene hierarchy. More recently,
Kaplanyan et al. [2010] approximated low frequency indirect illu-
mination in dynamic scenes by computing light propagation over a
3D scene lattice. While this method is fast and compact, it can only
simulate indirect illumination of diffuse surfaces.

Despite the different strategies used for speeding up computation,
the processing costs of these methods remain proportional to the
number of light bounces, which effectively limits the interreflec-
tion effects they can simulate. As the scene geometry becomes
more complex and the material becomes more glossy, the diverse
light paths often lead to greater computational costs in each bounce,
which also limits the scalability of these methods. On the contrary,
our method efficiently models all indirect lighting effects, includ-
ing challenging effects such as caustics and high-frequency glossy
interreflections.

Precomputed Light Transport Precomputed radiance transfer
(PRT) [Sloan et al. 2002; Ng et al. 2004; Ramamoorthi 2009] pre-
computes the light transport of each scene point with respect to
a set of basis illuminations, and uses this data at run time to re-
light the scene at real-time rates. Early methods [Sloan et al. 2002;
Sloan et al. 2003] support only low-frequency global illumination
effects by encoding the light transport with a spherical harmonics
(SH) basis. Later methods factorize the BRDF at each surface point
and represent the light transport with non-linear wavelets [Liu et al.
2004; Wang et al. 2006] or a spherical Gaussian basis [Tsai and
Shih 2006; Green et al. 2006] for rendering all-frequency global
illumination. However, these methods are limited by their support
for only distant lighting.

To support local light sources, Kristensen et al. [2005] model re-
flected radiance using a 2D SH basis, with sampling at a sparse
set of mesh vertices for a dense set of local light positions. The
light space samples are compressed by clustering, while the spatial
samples are partitioned into zones and compressed using clustered
PCA. During rendering, the data sampled at nearby light sources are
interpolated to generate rendering results for a new light position.



Since the data is sampled over sparse mesh vertices, this method
cannot well represent caustics and other high-frequency lighting ef-
fects. Also, a high-order SH basis is needed for representing view-
dependent indirect lighting effects on glossy objects.

Direct-to-indirect transfer methods [Hasan et al. 2006; Wang et al.
2007; Kontkanen et al. 2006; Lehtinen et al. 2008] precompute in-
direct lighting with respect to the direct lighting of the scene at
sampled surface locations. During rendering, the direct shading of
the scene is first computed and then used to reconstruct the indi-
rect lighting effects. Although this method can support local light
sources, the surfaces must be densely sampled to represent high-
frequency indirect lighting, which leads to large storage costs and
slow rendering performance.

Regression Methods Regression methods have been widely
used in graphics [Hertzmann 2003]. For example, Grzeszczuk et
al. [1998] used neural networks to emulate object dynamics and
generate physically realistic animation without simulation. Neural
networks also have been used for visibility computation. Dachs-
bacher [2011] applied neural networks for classifying different
visibility configurations. Nowrouzezahrai et al. [2009] fit low-
frequency precomputed visibility data of dynamic objects with neu-
ral networks. These visibility neural networks allow them to predict
low-frequency self-shadowing when computing the direct shading
of a dynamic scene. Finally, Meyer et al. [2007] used statistical
methods to select a set of key points (hundreds of them) and form
a linear subspace such that at run time, global illumination only
needs to be calculated at these key points. Although this method
greatly reduces computation, rendering global illumination at key
points remains time consuming.

3 Radiance Regression Functions

In this section, we first present the radiance regression function &
and explain how it can be obtained through regression with respect
to precomputed indirect illumination data. Then we describe how
to model the function & as a neural network ®y and derive an ana-
Iytic expression for the function ®dy. After that, we discuss neural
network structure and training, leaving the more technical details to
Appendix A. Finally, we show a simple example of rendering with
the function ®y.

In a static scene lit by a moving point light source, the reflected
radiance at an opaque surface point at position x,, as viewed from
direction v is described by the reflectance equation [Cohen et al.
1993]:

s(xp,v,1) =/Q+p(xp,v,vi)(n~v,-)s[(xp,vi)dvi )
=s0(xp,v,l)+s+(xp,v,l),

where 1 is the position of the point light, p and n denote the BRDF
and surface normal at position X, and s;(Xp, v;) represents the in-
coming radiance at x,, from direction v;. The parametric BRDF
p can be described by a closed-form function p. with a set of re-
flectance parameters a(x,) as follows:

P (Xp, v, Vi) = pe(v,vi,a(x)p)). ()

For a spatially variant parametric BRDF, the only part that varies
spatially is the parameter vector a(x,), which is represented by a
set of texture maps and thus can be efficiently used in the graphics
pipeline.

As shown in Equation (1), the reflected radiance s can be sepa-
rated into a local illumination component s° and indirect illumina-
tion component s™ that correspond to direct and indirect lighting

Global lllumination with Radiance Regression Functions . 130:3

respectively. As the local illumination component s° can be effi-
ciently computed by existing methods (e.g. [Donikian et al. 2006]),
we focus on the indirect illumination s™ that results from incom-
ing radiance contributions to s;(Xp,v;) of indirect lighting. Given
a point light of unit intensity at position 1, the function s* (x,,v,1)
represents the indirect illumination component toward viewing di-
rection v.

Combining Equation (1) and Equation (2), we can express the indi-
rect illumination component as

s*(x,,,vJ) :/Q+ pc(v,vha(xl,))(n(xp)-Vi)s;L(xmvi)dvi 3)

where sl.+ (xp, Vi) is the indirect component of the incoming radiance
5i(xp,vi). Here we also replaced the surface normal n by n(x,) to
make explicit the fact that the surface normal n at position x,, is
computed as a function of x,. From Equation (3) we observe that
the indirect illumination s* may be rewritten as

s (xp,v.1) = 54 (xp,v.Ln(x,),a(xp)), “)

for a new function s with an expanded set of attributes that in-
cludes the surface normal and BRDF parameter vector.

The indirect illumination st (x,,v,1) is a well-defined function
since for a given scene, we can perform light transport computa-
tion to obtain s™ for any surface point, light position, and viewing
direction. However, s* generally requires lengthy processing to
compute. In this work, we introduce the radiance regression func-
tion @, which is a function that approximates s™ in the least-squares
sense and is constructed such that it is compact, fast to evaluate, and
hence well-suited for real-time rendering.

Approximation by Regression We treat the approximation of in-
direct illumination s* as a regression problem [Hertzmann 2003]
and learn a regression function @ from a set of training data. In
principle, it would be sufficient to define ® in terms of only the set
of basic attributes Xp, v and 1, since they describe a minimal set of
factors that determine the indirect illumination at a point in a given
scene. However, the values of surface normals n and reflectance
parameters a can vary substantially over a scene area, making indi-
rect illumination s™ (xp,v,1) highly complex as a function of only
the basic attributes. Defining the regression function @ in terms
of a set of augmented attributes Xp, v, 1, n, and a thus allows for
more effective approximation of s™ by nonlinear regression, since
the surface quantities n and a would no longer need to be inferred
from the training data. We therefore define the radiance regression
function P at surface point p to be ®(x,,,v,1,n,a), which represents

a map from R'Z+" to R where np is the number of parameters in

the spatially variant BRDF and R spans the three RGB color chan-
nels.

The training data we use consists of a set of N input-output pairs
that sample the indirect illumination ﬁ()(,77 v,1). Each pair is called
an example, and the i-th example comprises the pair (x',y’), where
x = [x;,vi,li,ni,ai]T, y = s*(xé,v",li), andi=1,...,N. x' is the
input vector and y' is the corresponding output vector. The radi-
ance regression function @ is determined by minimizing the least-
squares error:

E:ZHyif<1>(xj,,vi,li7ni,ai)\|2. )
1

There may exist many functions that pass through the training
points (x’,y') and thus minimize Equation (5). A particular solu-
tion might give a poor approximation of the indirect illumination
57 (xp,V,1) at a new input vector (Xp,v,1,n,a) unseen in the train-
ing data. To produce a better approximation, a larger training set
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Figure 2: Modeling the RRF by an acyclic feed-forward neural net-
work, which defines a mapping from the input vector (Xp,v,1,n,a)
to the output RGB components defined in Equation (8).

size N could be used to more densely sample the input space. How-
ever, N must be limited in practice and to obtain a useful regression
function & we must restrict the eligible solutions for Equation (5)
to a smaller set of functions. These restricted models are known
as structured regression models [Hastie et al. 2009]. One of the
simplest is the linear model, which would work poorly for indirect
illumination s™ (xp,v,1) as it is highly non-linear with respect to its
input vector (X, v,1,n,a). In this work, we choose a neural network
as our regression model.

The primary reason for choosing neural networks is their relative
compactness and high speed in evaluation, which are critical factors
for real-time rendering. Neural networks also are well-suited for
our problem because they provide a simple yet powerful non-linear
model that has been shown to compete well with the best methods
on regression problems. A neural network may be regarded as a
non-linear generalization of the linear regression model as we shall
see. Moreover, neural networks have strong representational power
and have been widely used as universal function approximators.
Specifically, continuous functions or square-integrable functions on
finite domains can be approximated with arbitrarily small error by a
feed-forward network with one or two hidden layers [Hornik et al.
1989; Blum and Li 1991]. The indirect illumination function s™
belongs to this category of functions.

Neural Network RRF  With the radiance regression func-
tion represented by a neural network, we rewrite the RRF as
Dy (xp,v,1,n,a,w), where the new vector w is the weight vector of
the neural network @y and the components of w are called weights
of dy. Now Equation (5) becomes

E(w):ZHyi—@N(x;7vi,li,ni,ai,w)|\2. (6)
1

To find ®y, we need to select the structure of the neural network
and then determine its weights by minimizing E(w).

A neural network is a weighted and directed graph whose nodes are
organized into layers. The weights of the edges constitute the com-
ponents of the weight vector w. The network we use is an acyclic
feed-forward network with two hidden layers, as shown in Figure
2. Each node is connected to all nodes of the preceding layer by di-
rected edges, such that a node in the i-th layer receives inputs from
all nodes in the (i — 1)-th layer. The graph takes inputs through the
nodes in the first layer, also known as the input layer, and produces
outputs through the nodes in the last layer, the output layer. The
nodes in the input layer correspond to the dimensions of the RRF’s
input vector (X,,v,1,n,a). The output layer consists of three nodes,
one for each of the RGB color channels of the indirect illumination
sT. The layers between the input and output layers are called the
hidden layers.
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Each node operates by taking inputs from the preceding layer and
computing an output based on components {w‘] .+ of the weight vec-

tor w. Let us consider node j in the i-th layer, with n’] denoting its
output and Wi‘o as its bias weight. For each hidden layer, n; is calcu-
lated from the outputs of all nodes in the (i — 1)-th layer as follows:
. . . . Co
=0l 2 =wio+ Xwiur @
>

where w;k is the weight of the directed edge from node k of the

preceding layer to node j in the current layer. The node out-

puts the value G(Zj-) where ¢ is the hyperbolic tangent function

o(z) = tanh(z) = 2/(1 + e %) — 1, and z} is a linear combina-
tion of outputs from the preceding layer. The hyperbolic tan-
gent function is equivalent to the equally popular sigmoid function
o1(z) = 1/(1 +¢7%). Both ¢ and o] resemble the step function
(the Heaviside function) except that ¢ and o] are continuous and
differentiable, which greatly facilitates numerical computation. For

e i i il
the output layer, n; is simply n; = w 0 +Yis0 whme

Let ®y = [(b}\htblz\,,d)fv] and X = [Xp,v,1,n,a]. From Equation (7),
we obtain the analytic expression for ®p as follows:

9
' 3 3 2 2 1 |
Dy (x,w) =wip+ Y wi;o(wip+ Y, wio(wie + Y wiyxr)), (8)
>0 =0 i=1

where i = 1,2,3 and x; is the /-th component of the input vector x.
Note that the hyperbolic tangent function o is the only nonlinear
element of ®y. Indeed, if we replace all hyperbolic tangent func-
tions in @y by linear functions, then ®p becomes a linear model.
In this sense, a neural network is a nonlinear generalization of the
simple linear regression model.

Neural Network Structure & Training We choose the neural net-
work structure shown in Figure 2 based on the following consider-
ations. Since the input and output layers are fixed according to the
input and output format, only the number of hidden layers and the
number of nodes in each hidden layer need to be determined. In the-
ory, a neural network with one hidden layer can approximate a con-
tinuous function to arbitrary accuracy [Hornik et al. 1989]. How-
ever, the indirect illumination function s* contains many ridges and
valleys. This type of function requires a large number of nodes to
approximate if only one hidden layer is used, whereas with two
hidden layers such functions can be effectively approximated by a
relatively small number of nodes [Chester 1990; FAQ ]. Note that
discontinuities in the indirect illumination s are not a problem be-
cause with large weights the hyperbolic tangent function essentially
becomes a step function. Neural networks with more than two hid-
den layers are typically not used for function approximation be-
cause they are difficult to train. In Appendix A, we discuss how we
set the number of nodes in the two hidden layers.

The neural network @y is trained by using numerical optimization
to find the weights in w that minimize E (w) as defined in Equation
(6) for the training set. This training set is constructed by sampling
light positions and viewpoints, and tracing rays from the viewpoint
towards points in the scene to determine their indirect illumination.
The number of training samples is roughly ten times the number
of weights in w. Details on the training process and issues such as
overfitting are described in Appendix A.

Rendering After training the neural network, the indirect illumi-
nation of each scene point can be rendered under different light-
ing and viewing conditions. For a given viewpoint and light posi-
tion, we first compute the visible surface points of each screen pixel
and their surface position x,. Each attribute in the input vector is
scaled to [—1.0,1.0]. Then for each pixel, the scaled input vector



Figure 3: Comparison of RRFs with/without surface normal and
SVBRDF attributes. (a) Ground truth by path tracing. (b) RRFs
with augmented attributes, including both surface normal and
SVBRDF parameters. (c) RRFs with basic attributes plus only
SVBRDF parameters. (d) RRFs with only basic attributes (no sur-
face normal or SVBRDF parameters).

(xp,v,1,n,a) is input to the neural network @y to compute the indi-
rect illumination value. These indirect illumination results are then
added to those of direct illumination to generate the final rendering.

Run-time evaluation of @y is easy because both a(x,) and n(x,)
can be made available in the graphics pipeline. As mentioned ear-
lier, a(x),) is stored as a set of texture maps and is thus accessible
through texture mapping. n(x,) is also available because it is cal-
culated in evaluating the direct illumination s° in Equation (1). By
contrast, other factors that affect indirect illumination, such as the
distance and angles of other scene points, are relatively unsuitable
for inclusion in the input vector. Not only are these quantities not
readily available in the graphics pipeline, but they would require
a substantial number of inputs to represent, which would signifi-
cantly increase the number of neural network weights that need to
be learned. Each additional input adds n| weights to the neural net-
work, where n; is the number of nodes in the first hidden layer.
Since our design principle for the RRF is to make it compact and
fast to evaluate, we limit the number of additional inputs and only
choose quantities that are readily available.

Figure 3 displays rendering results of a simple scene consisting
of two objects, a sphere and a box, each of which is modeled
by an RRF. The ground truth image in (a) was rendered with the
physically-based offline path tracer [Lafortune and Willems 1993]
used in generating the training data. Here the sphere is textured by
a normal map and a spatially variant isotropic Ward BRDF [Ward
1992], whose spatially variant parameter a(x,,) is a 7D vector con-
sisting of 3D diffuse and specular colors and 1D specular rough-
ness. The same training data set is used to generate (b), (c) and
(d). In comparison to RRFs with only basic attributes (d) or basic
attributes plus only SVBRDF parameters (c), the inclusion of both
surface properties among the augmented attributes leads to higher
fidelity reproduction of surface details (b). Other frequently-used
parametric BRDF models such as the Cook-Torrance model, Blinn-
Phong model, anisotropic Ward model, and Ashikhmin-Shirley
model can also be effectively utilized in this manner.

(c) Subspace
bounding box

N 2 (d) Normalized
(a) Node in partitioned (b) Expanded subspace for
space training box training

Figure 4: Partitioning of input space for fitting of multiple RRFs.

4 Handling Scene Complexity

Input Space Partitioning So far, we have not considered complex
scenes with many objects. In theory, such a scene could be approx-
imated by a single RRF with a large number of nodes in the hidden
layers. However, this significantly complicates RRF training, as
the number of weights to be learned increases quadratically with
the number of hidden-layer nodes. More importantly, a larger net-
work leads to a much greater evaluation cost, which also increases
quadratically with the number of hidden-layer nodes. As a result,
expanding the neural network quickly becomes infeasible for real-
time rendering.

We address this issue by decomposing the space spanned by neu-
ral network input vectors into multiple regions and fitting a separate
RREF to the training data of each region. To partition the input space,
we take advantage of the fact that the scene is already divided into
different 3D objects as part of the content creation process (typi-
cally each object is topologically disconnected from other objects
in the scene). For each 3D object, we subdivide its input space using
akd-tree, which is a binary tree suitable for recursive subdivision of
a high-dimensional space. With this partition, the computation of
the indirect illumination value for an input only involves a kd-tree
search, which is extremely fast, and an evaluation of a small RRF.
For each object, its input space is an n-dimensional box, and we de-
note its kd-tree as X. Every non-leaf node v in X is an n-dimensional
point, which implicitly generates a splitting hyperplane that divides
the current-level box into two boxes at the next level of the kd-tree.
Each non-leaf node is associated with one of the n dimensions x;,
such that the splitting hyperplane is perpendicular to that dimen-
sion’s axis. For simplicity we always split the current-level box
through the middle, generating two next-level boxes of equal size.
The box to the left of the splitting hyperplane belongs to the left
subtree of node Vv, and the box to the right belongs to the right sub-
tree. Finally, the leaf nodes of the kd-tree X hold boxes that are not
subdivided further.

Figure 4 illustrates the subdivision processing at a node v, high-
lighted in (a). We take the training samples within the n-
dimensional box @ associated with the node v and fit an RRF to
them. To reduce discontinuity across adjacent boxes, we include
additional training samples from neighboring boxes by expanding
the box @ by 10% along each dimension as shown in (b). We could
further reduce discontinuities across the boundary of adjacent boxes
by creating a small transition zone and linearly interpolating the ad-
jacent RRFs. However, through experiments we found this to be
unnecessary. Before training, we normalize the bounding box of
the samples to a unit hypercube as shown in (c-d). We stop sub-
dividing the node v when both training and prediction errors are
less than 5% (relative error). Here the prediction error is measured
by evaluating the RRF against a test set removed from the pool of
all training samples. In our experiments, we remove 30% of the
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training samples for testing.

If further subdivision of the node v is required, we need to choose
an axis x; for splitting v. The best splitting axis is the one that
generates the smallest training and prediction errors on the child
nodes of v. A brute-force way to find this axis is to try every axis
and carry out the RRF fitting and testing process on the resulting
child nodes. Alternatively, we could randomly select a splitting
axis, which results in roughly 10% higher RRF fitting and testing
errors in our experiments.! For the results reported in this paper,
we use the brute-force method to identify the splitting axis.

The use of augmented attributes instead of only basic attributes in-
creases the apparent dimensionality of the input space, which could
make the subdivision process less efficient by creating a larger num-
ber of insignificant cells. However, we note that though s/ appears
to be a higher dimensional function than st, the intrinsic dimen-
sionality of s/ is no greater than s™ because both a and n are not
independent variables but rather functions of x,, which is already
an attribute in the input vector of s*. The function s/ is simply the
original function s embedded in a higher dimensional space. Since
our kd-tree subdivision criteria is completely driven by fitting and
prediction errors, a cell will be created only when necessary (i.e.,
when the errors are too high) and this fact remains true no matter
which space s™ is embedded. This error-driven subdivision criteria
ensures that no unnecessary cells are created.

A benefit of using kd-trees over a quadtree/octree-like partitioning
structure is that node splits are not jointly performed over all di-
mensions, which may lead to an overabundance of nodes in the
high-dimensional space and hence many more RRFs than needed.

Lighting Complexity Our discussion so far focuses on the case of
a single point light source. It is straightforward to handle the gen-
eral case of any finite number of local lights of any colors. More
importantly, this can be done without recomputing the RRF ®p.
Suppose there are K light sources with the k-th light located at po-
sition ;. Since ®p is computed for a unit light source and light
transport is linear with respect to light intensities, the indirect illu-

mination s may be written as
k=K
S+ (thvvll bl "'71K) = Z Ck@N(Xp,V,lk,ﬂ./ﬁ,W), (9)
k=1

where ¢, is the color of the &-th light. This equation implies that the
light positions and colors are all variables that are free to change in-
dependently under user control. Since each term in the sum is eval-
uated by the same RRF @y, no additional training or storage cost
is needed for multiple point lights. At run time, the main cost is the
evaluation of @y for multiple light positions and the computation
of direct illumination for each of the lights.

Note that the linearity of light transport allows us to handle any fi-
nite number of local lights of any colors by using the same RRF
®,. Without this property, we would have to simultaneously in-
clude the positions and colors of all lights as input variables of ®p,
resulting in a neural network that is prohibitively expensive to train
and store.

5 Implementation and Results

We implemented the proposed partitioning and training algorithm
on a PC cluster with 200 nodes, each of which is configured with

!Note that these errors are only used for guiding the subdivision of non-
leaf nodes; the final fitting and testing errors on the leaf nodes are deter-
mined by the same stopping criteria no matter how splitting axes are chosen.
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Scene Vertex Num. Sample Num. Partition Num. Sampling Time Training Time
CornellBox 29K 10M 6.5K 0.25h 0.75h
Plant 194K 110M 75.5K 3h 7.5h
Kitchen 122K 60M 32.5K 12h 1.5h
Sponza 31K 50M 33.0K 2.5h 1.2h
Bedroom 194K 190M 127.4K 75h 10h

Table 1: Performance data on RRF training.

Scene RRF Size FPS Dir. Shading | Tree Trav. | RRF Eval.
CornellBox 5.64MB 61.9fps 5.33ms 2.39ms 8.43ms
Plant 66.77MB 32.6fps 5.10ms 2.52ms 23.05ms
Kitchen 33.12MB 36.5fps 15.341ms 2.37ms 9.62ms
Sponza 24.81MB 60.8fps 6.75ms 2.16ms 7.54ms
Bedroom 109.09MB 69.11ps 2.61ms 2.44ms 9.40ms

Table 2: Performance data on RRF-based rendering. Dir. shading
denotes the computation time for direct shading. Tree Trav. is the
computation time for partition tree traversal, and RRF Eval. repre-
sents the time for RRF evaluation.

two Quadcore Intel Xeon L5420 2.50G CPUs and 16GB of mem-
ory. The indirect illumination values for the training set are com-
puted using the Mitsuba renderer [Jakob 2010] on the same clus-
ter. The real-time rendering algorithm is implemented on an nVidia
GeForce GTX 680 with 2GB of video memory. The direct il-
lumination component is calculated with a programmable render-
ing pipeline using variance shadow maps [Donnelly and Lauritzen
2006].

At run time, we use CUDA to compute the indirect illumination
value for each screen pixel as follows. The input vectors of all pix-
els are stored in a matrix M that is converted from the G-buffers
of the deferred shading pipeline, one input vector per matrix col-
umn. Since a kd-tree is built for each 3D object, we also store an
object ID with each input vector so that it is easy to locate the cor-
responding kd-tree. In the CUDA kernel for kd-tree traversal, each
thread reads an input vector x from the matrix M, locates a kd-tree,
and traverses down the kd-tree to reach a leaf node, where it picks
up the ID of the neural network @y for the partition containing X.
Then in the neural network CUDA kernel, each thread feeds the in-
put vector x to the neural network ® and evaluates the color value
of the pixel according to Equation (8).

We tested our method on a variety of scenes that exhibit differ-
ent light transport effects. The Cornell Box scene (Figure 9 a-b)
includes rich interreflection effects between the diffuse and spec-
ular surfaces, such as color bleeding and caustics. In the Plant
scene (Figure 9 c-d), the fine geometry of the plant model results
in complex occlusions and visibility change. The Kitchen scene
(Figure 10) is used to illustrate view-dependent indirect illumina-
tion effects caused by strong interreflections between specular sur-
faces. We also tested the scalability of our method on two complex
scenes. The Sponza scene (Figure 11) consists of diffuse surfaces
with complex geometry. In the Bedroom scene (Figure 12), objects
with different shapes and material properties are placed together
and they present rich and complicated shading variations under dif-
ferent lighting and viewing conditions.

Table 1 lists for each scene the number of vertices and detailed
training performance data, including training data sizes and tim-
ings for training sample generation and the training process.The

Scene Mean error | Random training set | Random weight init.
CornellBox 0.029 0.00021 0.00018
Plant 0.066 0.00014 0.00014
Kitchen 0.056 0.00008 0.00032

Table 3: Rendering accuracy of three scenes, and robustness with
respect to different choices of training data set and different initial
neural network weight values.



Figure 5: Comparison of results rendered by our method and those
of path tracing. Only indirect illumination results are shown. Left:
Path tracing results. Middle: Our rendering results. Right: Differ-
ence between the two results.

run-time rendering performance for each scene is reported in Ta-
ble 2. The relatively long RRF evaluation time for the Plant scene
is due to its intricate geometry, which leads to many neighboring
points belonging to different partitions and hence low data coher-
ence. The image resolution for all the renderings is 512 x 512.

Method Validation We validate our RRF training and rendering
method with the Cornell Box, Plant and Kitchen scenes. To eval-
uate accuracy, we compare the images rendered by our method to
ground truth images generated by Mitsuba path tracing with each
pixel rendered using 16384 rays for the Cornell Box scene, 4096
rays for the Plant scene, and 32768 rays for the Kitchen scene. In
this experiment, we rendered 400 images of 512 x 512 resolution
with pairings between 20 randomly selected view positions and 20
random light positions, none of which were used in the training set.
The rendering error E was computed as the root-mean-square error
of the 400 image pairs. The first column of Table 3 shows the mean
errors for three scenes. Figure 5 shows our results, the ground truth
images, and the differences between them. It is seen that the RRFs
accurately predict the indirect illumination values of surface points
under novel lighting, and they generate results that are visually sim-
ilar to the ground truth. Note that the errors in textured regions are
mainly due to the different texture filters used in Mitsuba and our
RRF rendering, while the errors along object boundaries are caused
by the single sample ray for each pixel used in our RRF rendering.

To test the robustness of our training method with different training
sets, we trained the RRFs with 70% of the samples randomly se-
lected from the full training set and used the RRFs to render the 400
images mentioned above. This was done a total of ten times with
different sets of training samples, and the rendering results were
each compared to ground truth. We found that for the ten resulting
neural networks, their mean rendering errors are approximately the
same as that of the original RRF fitting, and the standard deviation
of the errors is very small. We report the standard deviation of the
errors for the three scenes in the second column of Table 3. We also
examined in a similar manner the robustness of our training method
for different initial weight values. In each experiment, we use the
same training data but with different initial weight values within
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Figure 6: Accuracy of RRFs generated from training sets of dif-
ferent sizes. (a) Rendering errors of RRFs computed from differ-
ent sizes of training data. (b)-(e) Rendering results of the different
RRFs. (f) Ground truth image.

[—1.0,1.0]. The standard deviations of the rendering errors over
the ten sets of RRF rendering results for the three scenes are listed
in the third column of Table 3. These experiments indicate that
our training method is stable and robust with respect to different
choices of initial weight values and different selections of training
data. The different rendering results for a given input vector also
visually appear similar.

The accuracy of RRFs is mainly determined by the size and ac-
curacy of the training set. Figure 6(a) plots the rendering errors
of RRFs computed from different amounts of training data for the
Cornell Box scene. Figure 6(b)-(f) illustrates the rendering results
of the RRFs and the ground truth image generated by path tracing.
Although the RRFs trained from relatively little data can well re-
construct the low-frequency shading variations over the surface, the
rich shading details are lost. As the size of training data increases,
the accuracy of RRFs improves quickly and become stable after the
number of training samples reaches 10M (i.e. the size used in our
implementation). Beyond that, the accuracy and rendering quality
of RRFs improves slowly as the size of training data increases. Fig-
ure 7(a) plots the rendering errors of RRFs computed from training
sets generated with different levels of accuracy also for the Cornell
Box scene. The number of training samples is 10M in this experi-
ment while each training set is generated by path tracing with differ-
ent numbers of rays. Figure 7(b)-(f) shows the rendering results of
RRFs and the ground truth image, which was rendered with 16384
rays. When decreasing the number of rays used in training set gen-
eration from 4096 to 256, the noise in the sampling data becomes
larger, which leads to larger error in RRF rendering and blocking
artifacts in regions with smooth shading. On the other hand, the
accuracy of RRFs is stable as the number of rays grows from 4096
to 16384, since the accuracy of training samples improves little be-
yond using 4096 rays in path tracing. Based on this, our imple-
mentation for rest of the paper uses 4096 rays to generate the RRF
training data.

Rendering results Figure 9(a-b) displays rendering results of the
Cornell Box scene under different lighting and viewing conditions.
In this scene, the left/right wall, ceiling and floor are diffuse sur-
faces, and all the remaining objects are glossy. The color bleeding
between the side walls and ceiling is well reproduced. The caustics
caused by the ring and statue are convincingly generated. Figure
9(c-d) shows rendering results of the Plant scene. The multi-bounce
interreflections on the desktop and the plant leaves closely match
ground truth.
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Figure 7: Accuracy of RRFs generated from training sets rendered
with different numbers of rays. (a) Rendering errors of RRFs with
respect to the number of rays used in training data generation. (b)-
(e) Rendering results of the different RRFs. (f) Ground truth image.

In Figure 10, rendering results are displayed for the Kitchen scene,
where the multi-bounce interreflections between the glossy sur-
faces generate strong indirect illumination effects. With different
viewpoints, the changing reflections of the fruits and bottles on the
back wall and desktop are well reproduced. For comparison, we
also show the scene rendered with only direct illumination in Fig-
ure 10(d).

Figure 11 shows renderings of the Sponza scene. The shading vari-
ations caused by multi-bounce interreflections are accurately gen-
erated, including interreflections with three or more bounces in the
roof of the cloister arcade as shown in (a), and shadows cast by
indirect lighting in (c).

The Bedroom scene, which exhibits complex indirect illumination
effects, is rendered in Figure 12. Rendering all complex lighting
effects in the scene is a challenging task even for offline global illu-
mination algorithms. Our method reproduces all the lighting effects
in real time with only 109.09 MB of RRF data. Both the smooth in-
direct illumination from diffuse surfaces and the detailed reflections
from glossy objects are well rendered.

The accompanying video provides real-time rendering results of all
the scenes with dynamic viewpoint and lighting. The video also
includes real-time rendering with multiple dynamic local lights of
changing colors, as well as examples of real-time material editing
as discussed below.

Material Editing The RRF provides a flexible technique for real-
time material editing, which benefits greatly from the RRF’s ability
to capture advanced visual effects such as changing caustics (Fig-
ure 8§ a-b) and high-frequency glossy interreflections (Figure 8§ c-d).
For further details, please refer to Appendix B.

6 Discussion

Although our approach is also based on precomputation for ren-
dering global illumination effects in real time, it is conceptually
different from PRT methods and has very different properties. All
PRT methods model the global illumination of each surface point
as a linear function between incoming and outgoing radiance. To
deal with 6D indirect global illumination (with respect to surface
position, viewing direction, and distant lighting direction), these
methods densely sample 2D object surfaces and encode the 4D light
transport of each surface point with a linear or non-linear basis.
This separate representation takes advantage of the non-linear co-
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Figure 8: Extension of RRFs to real-time material editing. (a)(b)
Changing the specular color of the statue and the glossiness of the
ring. (c)(d) Editing the diffuse color of the fruits and the glossiness
of the back wall.

herence in the 6D indirect global illumination in a limited way. In
particular, the scene must be densely tessellated in order to model
high-frequency lighting effects on the surface. Although the data
size can be reduced by different data compression schemes such as
CPCA and clustered tensor approximation, these piecewise linear
or multi-linear compression schemes prevent full exploitation of
the non-linear coherence in the data. A large amount of data and
computation is needed for rendering high-frequency lighting ef-
fects, such as caustics, sharp indirect shadows, and high-frequency
glossy interreflections. To our knowledge, no existing PRT method
can render all of these effects in real time for local light sources.

By contrast, our method directly approximates the 6D indirect
global illumination and can effectively take advantage of the non-
linear coherence in all six dimensions simultaneously. Moreover,
the precomputed neural networks have analytic forms and do not
require dense surface meshing to capture high-frequency lighting
effects. For the Cornell Box scene which exhibits caustics and com-
plex interreflections of multiple glossy objects, our method needs
only 5.6 MB of data for rendering the scene at 60 FPS. For compar-
ison, Green et al. [2006] modeled incident lighting with a mixture
of spherical Gaussians, which requires about 25 MB of data to ren-
der one single homogeneous glossy object. With Kristensen et al.’s
approach [2005], a single glossy bunny model can be rendered with
17 MB of precomputed and compressed data. The direct-to-indirect
transfer methods presented by Kontkanen et al. [2006] sample the
4D transport matrix of direct light to indirect light at each surface
point and encode the transport matrix using a wavelet basis. It re-
quires 23 MB of data to render the low-resolution indirect lighting
of a small scene with two glossy objects. Because of the complexity
of the compression scheme (4D wavelet basis), the rendering frame
rate is low (about 10 FPS).

While the performance of our method is independent of the den-
sity of mesh tessellations (i.e. the number of vertices), it is af-
fected by the scale and geometric configuration of the scene. As the
scale of the scene becomes larger, the coherence of indirect light-
ing among the different regions of the scene decreases accordingly,



which leads to more partitions and RRFs needed for rendering. For
the Sponza scene, our method uses 24.81 MB of data for rendering
its lighting effects throughout the scene. The indirect shadowing ef-
fects in the scene are effectively rendered. For reference, Kristensen
et al.’s solution used about 17 MB of data for modeling the diffuse
interreflections in the same scene. Since the shading effects are
sampled over the sparse mesh vertices, the detailed indirect shad-
owing effects between vertices are lost. The meshless approach of
Lehtinen et al. [2008] needs 77.4 MB data to achieve a rendering
quality similar to our method for this scene. For scenes with sharp
indirect shadowing effects that are caused by complicated geome-
try configurations (e.g. the Bedroom scene and the Plant scene),
our method also needs more RRFs for rendering. Note that these
scenes are also challenging for previous PRT methods.

In this work we have considered lighting environments composed
of point light sources, but RRFs can be utilized with other types of
light sources as well. For example, directional lights can be han-
dled by training RRFs of the form ®y(x,,v,d,n,a,w), where d is
the light direction. However, environment lighting must be han-
dled carefully because allowing unlimited change of every pixel in
the environment map could lead to an explosion in the degrees of
freedom of the input vector, and thus make the training of RRFs
impractical. If only rotation of the environment light is needed, this
may be achieved by training RRFs of the form ®y(x,,v,r,n,a,w),
where r is the rotation vector of the environment light. For more
general changes of environment light, we can adjust low-frequency
lighting as in PRT by projecting the light onto a spherical harmonics
basis and selecting the first few terms of the basis expansion as RRF
inputs. One RRF can then be trained for each selected basis func-
tion, and the RRFs so trained can be combined as in Equation (9).

There are other ways to parameterize the input variables x;, and v
of the RRF ®y(x,,v,1,n,a,w). If there is no participating media
in the scene, then we are only interested in points X, on surfaces,
which can be parameterized by two variables u,, v,. This would
reduce the degrees of freedom and make RRF training easier. In
this work, we choose to directly work with 3D points x,, because
in practice graphics objects often come in different formats and it
is not always easy to parameterize them. We also want to leave the
RRF in a general form suitable for scenes with participating media.
The same consideration applies to the viewing vector v.

Our current system takes a long time for preprocessing. We made
no effort to optimize this lengthy preprocessing stage because our
focus was on achieving real-time rendering without sacrificing any
global illumination effects. In the future, much work can be done
to reduce the precomputation time. The precomputation includes
two parts: sampling the training data and neural network training.
The long computation time for sampling is due to the brute-force
path tracing algorithm used in our current implementation. This
time could be greatly reduced by using faster global illumination
algorithms (e.g. photon mapping). The neural network training
code is not optimized and takes 1~10 hours to generate the neural
networks of each example in the paper. This could be accelerated
by 10X~30X on the GPU.

The main limitation of the RRF is that the dimensionality of the in-
put vector should not be too high. With a large number of indepen-
dent variables in the input vector, training the neural network be-
comes impractical in terms of both the training time and the amount
of training data needed. Our work shows that dynamic viewpoint
and local lights can be handled well. However, introducing addi-
tional dynamic elements such an animated objects into the scene
requires care. Dynamic elements should be added in a manner that
the degrees of freedom in the scene remain manageable.

Another limitation of the RRF is that it provides a good approxima-
tion only of the indirect illumination near sampled viewing direc-
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tions and light positions. In other words, the RRF works well when
interpolating between samples but poorly when extrapolating from
a neighboring sample.

7 Conclusion

We described the radiance regression function as a nonlinear model
of indirect illumination for dynamic viewing and lighting condi-
tions. Our experiments show that convincing rendering including
challenging visual effects such as high-frequency glossy interreflec-
tions can be achieved with a relatively compact RRF model, which
indicates that significant non-linear coherence exists in the indirect
illumination data. This coherence can be effectively exploited by
real-time rendering methods that are based on precomputed global
illumination. Our RRF representation is run-time local in the sense
that the run-time evaluation of the RRFs of each 3D object does
not involve any other objects in the scene. Thus the rendering can
remain real-time even for a large scene with many objects, because
all objects are rendered in parallel in screen space.

We plan to investigate a couple of directions for further work. We
currently only work with opaque objects and assume there is no par-
ticipating media. Future directions may include handling of translu-
cent objects and participating media. We are also interested in ways
to reduce the training time. Finally, we intend to investigate meth-
ods for efficiently handling dynamic scenes. Though scaling up
from the few degrees of freedom in this paper to the many degrees
of freedom of less constrained scene configurations presents a sig-
nificant challenge, this problem could potentially be simplified by
adapting the set of attributes for an object/region to account only for
animated objects that can have a discernible effect on its shading.
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Appendix A: Neural Network Details

The neural networks used in this work contain two hidden layers.
To determine the numbers of nodes in these hidden layers, we ex-
perimented with different node arrangements for the scene in Fig-
ure 3. As shown in Figure 13, increases to the number of nodes
in each layer lead to reductions in fitting error. Meanwhile, the
number of weights also increases, which necessitates greater com-
putation for neural network training and evaluation. In our current
implementation, we use 20 nodes in the first hidden layer and 10
nodes in the second hidden layer, which provides a good balance
between approximation capability and computational efficiency.

To train the neural network, a set of training data must first be ob-
tained. Given a scene with a predefined range of light source po-
sitions and viewpoints, we generate the training set by a Latin hy-
percube sampling scheme [McKay et al. 2000] and compute the
indirect illumination values of all examples by path tracing [Lafor-
tune and Willems 1993]. Specifically, we uniformly subdivide the
light range into NV strata and randomly sample the light position in
each stratum. We then sample N, viewpoint positions in a similar
manner. For each combination of light position 1 and viewpoint, we
randomly shoot N, rays from the viewpoint and trace each ray v to
the first intersection point X in the scene. We then record the sur-
face point position x,, and compute its indirect illumination value
via path tracing. Through this process we generate N; x N, X N, ex-
amples that form the training set. The total number of samples is set
to approximately ten times the number of neural network weights
[Grzeszczuk et al. 1998]. The values of N,, N; and N, are then cho-
sen by the user based on scene complexity. For the scene shown in
Figure 5(b), we set N,, = 200, N; = 200, and N, = 6000. Instead of
directly sampling points on a surface, our method samples intersec-
tions on the surface of viewing rays, which avoids visibility tests
and ensures that the visible surface is well sampled. We note that
since some rays may not intersect points in the scene, the value of
N, may need to be increased to generate the targeted number of ex-
amples. Other sampling techniques may alternatively be used here
for training set generation.

Having determined the structure of the neural network ®y and the
training set, we now train ®y(x,,v,1,n,a,w) by solving for all the
weights in w. This is done by applying the Levenberg-Marquardt
(LM) algorithm as in [Hagan and Menhaj 1994] to minimize E (w)
in Equation 6. For the small-scale neural networks used in our sys-
tem, the LM algorithm demonstrates better performance than other
gradient-based and conjugate methods [Hagan and Menhaj 1994].
We follow the implementation in [Beale et al. 2012] to first com-
pute the range of each element in both the input and output vectors,
and scale each element to [—1.0, 1.0] so that they are treated equally
in training. The scale factor of each attribute is saved for run-time
computation. After the weight vector w is initialized with random
values in [—1.0,1.0], we then iteratively update w:

wH = W'+ (H + Adiag[H]) g, (10)

where w"t! and w” are the weight vectors in the current and pre-

vious iterations. H is the Hessian matrix of £(w) with respect to
w, which can be efficiently computed from the Jacobian matrix J of
E(w)as H=JTJ. A isa constant for controlling the step length and
is automatically determined by the algorithm. g denotes the gradi-
ent of the current error function E(w") with respect to the weights,
and is calculated as g = JT E(w"). In each iteration, we compute the
Jacobian matrix of £(w") with a standard back-propagation scheme
[Hinton 1989]. We repeat this process until the error E(w) drops
below a user-defined threshold (0.05 in our implementation).

We tried both batch training and online training [Hastie et al. 2009]
for our task. In batch training we minimize E(w) with all training
data, while in online training we divide the training data into sub-
groups and progressively update the weight vector by minimizing
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E(w) with a subgroup. For our application, we have found batch
training to always outperform online training, and thus it is used in
our implementation.

Overfitting is an important and well-studied issue in regression. A
neural network with too many free parameters will overfit the data.
To avoid this we make sure that we have sufficient training data as
in [Grzeszczuk et al. 1998], i.e., 8 ~ 10 times the number of neural
network weights. Another important technique is cross-validation:
we use 70% of the training data for neural network training, and re-
serve the remaining 30% to validate the training result [Beale et al.
2012]. Finally, there is yet another technique called weight decay (a
form of regularization) [Hastie et al. 2009]. We have implemented
this technique in our system as well but found little further improve-
ment. In Section 6 we reported that our regression system is robust
with respect to different choices of training sets and initial weight
values. This is another sign indicating that overfitting is under con-
trol in our system.

Appendix B: Material Editing

The RRF provides a flexible technique for editing material proper-
ties of selected objects in the scene, with the ability to visualize edit-
ing results in real-time with full global illumination effects. Visual
effects that are usually challenging to capture with existing meth-
ods, such as changing caustics and multiple-bounce high-frequency
glossy interreflection, can be well reproduced with RRFs. Depend-
ing on the nature of the editing task, we can choose to fix either the
lighting or the viewpoint, and replace the corresponding RRF input
variables by the BRDF parameters of the selected objects. Fig-
ure 8(a-b) shows the editing of the specular roughness of the ring
and the specular color of the gargoyle in the Cornell Box scene. In
this example, we are particularly interested in how the caustics gen-
erated by the ring change as the specular roughness and the lighting
change. Thus we choose to fix the viewpoint and replace the view-
ing direction variables of the RRFs by new variables representing
the specular roughness of the ring and the specular color of the gar-
goyle. A training set is generated based on the new input vector, and
the RRFs are obtained by regression with respect to the new training
data. The resulting RRFs support real-time editing of these mate-
rial properties since they are now the input variables of the RRFs,
as demonstrated in the companion video. Figure 8(c-d) shows the
editing of fruit colors and the specular roughness of the back wall
in the Kitchen scene. In this example, we choose to focus on the
multiple-bounce high-frequency glossy interreflection on the back
wall as seen from different viewpoints. Again, we can easily ac-
commodate this choice by fixing the light position and leaving the
viewing direction as an input variable of the RRFs, while support-
ing material editing by using the color of the fruits and the specular
roughness of the back wall as RRF input variables when generating
training data and performing RRF regression. Note that multiple-
bounce high-frequency glossy interreflection is very difficult to cap-
ture with most existing methods because these methods commonly
assume that multiple-bounce interreflection is low-frequency.





